Computer Vision Notes

- 3 mins

Computer Vision Notes (Aalto)


1. Camera Calibration & Projective Geometry

Intrinsic Camera Matrix

$$ K = \begin{bmatrix} f & s & u_0 \\ 0 & a f & v_0 \\ 0 & 0 & 1 \end{bmatrix} $$

Homogeneous Coordinates

$$ c \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \equiv \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} $$

2. Feature Detection & Matching

Harris Corner Detection

  1. Compute gradients $I_x$, $I_y$ (using Sobel filters).
  2. Construct second-moment matrix $M$:
$$ M = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} $$
  1. Corner response:
$$ R = \det(M) - k \cdot \text{trace}(M)^2 $$

SIFT Descriptors

$$ \text{NNDR} = \frac{\text{distance to 1st NN}}{\text{distance to 2nd NN}} \leq 0.8 $$

3. Optical Flow & Motion Estimation

Lucas-Kanade Method

$$ \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -I_t $$

Aperture Problem


4. RANSAC & Model Fitting

RANSAC Algorithm

  1. Randomly sample minimal points (e.g., 4 for homography).
  2. Fit model (e.g., line, homography).
  3. Count inliers (points within threshold $t$).
  4. Refit model using all inliers.
$$ t^2 = 3.84 \sigma^2 $$
$$ N = \frac{\log(1 - p)}{\log(1 - (1 - e)^s)} $$

5. Hough Transform

Line Detection

  1. Edge detection (e.g., Canny).
  2. Vote in $(\theta, \rho)$ space:
    • Each edge point votes for all lines passing through it.
    • Peaks in Hough space = detected lines.

6. Triangulation & 3D Reconstruction

Triangulation Equations

Given two camera matrices $P_1$, $P_2$ and corresponding points $x_1$, $x_2$:

$$ x_1 \times (P_1 X) = 0, \quad x_2 \times (P_2 X) = 0 $$

Bundle Adjustment


7. Deep Learning for Vision

CNN Basics

$$ \mathcal{L} = -\sum t_i \log(p_i) $$

Region Proposal Networks (RPN)


References & Resources

  1. Visualizing Linear Transformations (Geogebra)
  2. RANSAC Lecture Notes (PSU)
  3. Homogeneous Coordinates (Song Ho)

comments powered by Disqus